Quantum transport and field-induced insulating states in bilayer graphene pnp junctions.
نویسندگان
چکیده
We perform transport measurements in high quality bilayer graphene pnp junctions with suspended top gates. At a magnetic field B = 0, we demonstrate band gap opening by an applied perpendicular electric field with an On/Off ratio up to 20,000 at 260 mK. Within the band gap, the conductance decreases exponentially by 3 orders of magnitude with increasing electric field and can be accounted for by variable range hopping with a gate-tunable density of states, effective mass, and localization length. At large B, we observe quantum Hall conductance with fractional values, which arise from equilibration of edge states between differentially doped regions, and the presence of an insulating state at filling factor v = 0. Our work underscores the importance of bilayer graphene for both fundamental interest and technological applications.
منابع مشابه
Symmetry breaking in the zero-energy Landau level in bilayer graphene.
The quantum Hall effect near the charge neutrality point in bilayer graphene is investigated in high magnetic fields of up to 35 T using electronic transport measurements. In the high-field regime, the eightfold degeneracy in the zero-energy Landau level is completely lifted, exhibiting new quantum Hall states corresponding to filling factors nu=0, 1, 2, and 3. Measurements of the activation en...
متن کاملTransport spectroscopy of symmetry-broken insulating states in bilayer graphene.
Bilayer graphene is an attractive platform for studying new two-dimensional electron physics, because its flat energy bands are sensitive to out-of-plane electric fields and these bands magnify electron-electron interaction effects. Theory predicts a variety of interesting broken symmetry states when the electron density is at the carrier neutrality point, and some of these states are character...
متن کاملQuantum Hall effect, screening, and layer-polarized insulating states in twisted bilayer graphene.
We investigate electronic transport in dual-gated twisted-bilayer graphene. Despite the subnanometer proximity between the layers, we identify independent contributions to the magnetoresistance from the graphene Landau level spectrum of each layer. We demonstrate that the filling factor of each layer can be independently controlled via the dual gates, which we use to induce Landau level crossin...
متن کاملSpin-dependent Klein tunneling in graphene: Role of Rashba spin-orbit coupling
Within an effective Dirac theory the low-energy dispersions of monolayer graphene in the presence of Rashba spin-orbit coupling and spin-degenerate bilayer graphene are described by formally identical expressions. We explore implications of this correspondence for transport by choosing chiral tunneling through pn and pnp junctions as a concrete example. A real-space Green’s function formalism b...
متن کاملInhomogenous electronic structure, transport gap, and percolation threshold in disordered bilayer graphene.
The inhomogenous real-space electronic structure of gapless and gapped disordered bilayer graphene is calculated in the presence of quenched charge impurities. For gapped bilayer graphene, we find that for current experimental conditions the amplitude of the fluctuations of the screened disorder potential is of the order of (or often larger than) the intrinsic gap Δ induced by the application o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 10 10 شماره
صفحات -
تاریخ انتشار 2010